Radon is a decay product of uranium, which is relatively common in the Earth’s crust, but generally concentrated in ore-bearing rocks scattered around the world. Every square mile of surface soil, to a depth of 6 inches (2.6 km2 to a depth of 15 cm), contains approximately 1 gram of radium, which releases radon in small amounts to the atmosphere. On a global scale, it is estimated that 2,400 million curies (90 TBq) of radon are released from soil annually.

Radon concentration varies wildly from place to place. In the open air, it ranges from 1 to 100 Bq/m3, even less (0.1 Bq/m3) above the ocean. In caves or aerated mines, or ill-aerated houses, its concentration climbs to 20–2,000 Bq/m3. Radon concentration can be much higher in mining contexts. Due to ventilation regulation, typical radon concentration in uranium mines is usually maintained under the “working level”, with 95th percentile levels ranging up to nearly 3 WL (546 pCi222Rn per liter of air; 20.2 kBq/m3, measured from 1976 to 1985).[1] The concentration in the air at the (unventilated) Gastein Healing Gallery averages 43 kBq/m3 (1.2 nCi/L) with maximal value of 160 kBq/m3 (4.3 nCi/L).

Radon mostly appears with the decay chain of the radium and uranium series (222Rn), and marginally with the thorium series (220Rn). The element emanates naturally from the ground and some building materials, all over the world wherever traces of uranium or thorium can be found, and particularly in regions with soils containing granite or shale, which have a higher concentration of uranium. However, not all granitic regions are prone to high emissions of radon. Being a rare gas, it usually migrates freely through faults and fragmented soils, and may accumulate in caves or water. Due to its very short half-life (four days for 222Rn), its concentration decreases very quickly when the distance from the production area increases. Its concentration varies greatly with season and atmospheric conditions. For instance, it has been shown to accumulate in the air if there is a meteorological inversion and little wind.

High concentrations of radon can be found in some spring waters and hot springs. The towns of Boulder, Montana; Misasa; Bad Kreuznach, Germany; and the country of Japan have radium-rich springs which emit radon. To be classified as a radon mineral water, radon concentration must be above a minimum of 2 nCi/L (74 kBq/m3). The activity of radon mineral water reaches 2,000 kBq/m3 in Merano and 4,000 kBq/m3 in Lurisia (Italy).

Natural radon concentrations in Earth’s atmosphere are so low that radon-rich water in contact with the atmosphere will continually lose radon by volatilization. Hence, ground water has a higher concentration of 222Rn than surface water, because radon is continuously produced by radioactive decay of 226Ra present in rocks. Likewise, the saturated zone of a soil frequently has a higher radon content than the unsaturated zone because of diffusional losses to the atmosphere.

In 1971, Apollo 15 passed 110 km (68 mi) above the Aristarchus plateau on the Moon, and detected a significant rise in alpha particles thought to be caused by the decay of 222Rn. The presence of 222Rn has been inferred later from data obtained from the Lunar Prospector alpha particle spectrometer.

Radon is found in some petroleum. Because radon has a similar pressure and temperature curve as propane, and oil refineries separate petrochemicals based on their boiling points, the piping carrying freshly separated propane in oil refineries can become partially radioactive due to radon decay particles. Residues from the petroleum and natural gas industry often contain radium and its daughters. The sulfate scale from an oil well can be radium rich, while the water, oil, and gas from a well often contains radon. Radon decays to form solid radioisotopes which form coatings on the inside of pipework. In an oil processing plant, the area of the plant where propane is processed is often one of the more contaminated areas, because radon has a similar boiling point as propane.

Contact Terra-Petra for a Radon Gas Testing proposal today.